Ind. J. Physiol. Pharmac., 1980; 34 (1): 45-47

EFFECT OF INTRACISTERNALLY ADMINISTERED ADENOSINE AND INOSINE ON APOMORPHINE-AND AMPHETAMINE-INDUCED STEREOTYPED BEHAVIOUR IN RATS

J. SINGH*

Department of Pharmacology, Medical College, Rohtak-124 001 (Haryana)

(Received on September 2, 1989)

Abstract : Apomorphine (2.5 mg/kg, ip)- and amphetamine 25 mg/kg, ip) - induced stereotyped behaviours were studied in rats pretreated with adenosine and inosine (12.5 nM/rat; volume, 10 μ 1, intracisternal injection).

Adenosine and inosine significantly antagonize the apomorphine - and amphetamine - induced stereotyped behaviour, presumably via modulation of nigrostriatal dopamine release.

Key words:

adenosine

inosine

apomorphine

amphetamine

stereotypy

INTRODUCTION

METHODS

It is now widely accepted that adenosine functions as an endogenous neuromodulator in both peripheral and central nervous system (CNS, 1). Adenosine is a normal constituent of the brain and is release from brain slices under certain conditions. A rapid rise of adenosine levels in the extracellular space following cerebral hypoxia (2), hypotension (3), seizures (4), and ischemia (5) have been demonstrated. Cerebral tissue stimulation results in the release of adenosine and smaller quantities of inosine hypoxanthine and other adenine nucleotides (6). Adenosine and adenine nucleotides inhibit spontaneous firing of neurons in virtually all brain regions (7). Adenosine has been shown to reduce amplitude of excitatory post synaptic potential (EPSP) in various parts of brain by an unknown mechanism (8) and inhibits the release of nearly all neurotransmitters, whether inhibitory or excitatory (9) Adenosine agonists have been shown to have sedative and hypnotic effects (10) and inhibit epileptiform activity in vitro (11). However, the physiological role of adenosine and inosine in the CNS is still unclear (1) and very little is known concerning the behavioural effects of adenosine and other nucleosides. The present study investigates the role of adenosine and inosine in apomorphine - and amphetamine - induced stereotyped behaviours in rats.

Animals: Albino rats of wistar strain (HAU, Hissar, 120 - 140g) with free access to standard diet (pellets, Hindustan Lever Limited, India) and tap water were used. They were kept in an animal room under constant temperature (27±0.5°C), humidity and normal (12hr) light-dark cycle. Experiments were conducted between 10 and 15hr.

Apomorphine - induced stereotypy: Animals were divided into 3 groups of 10 in each. Group I served as control (treated with 10 ul normal saline intracisternally, i. cis.). In groups II and III adenosine and inosine (12.5 nM/rat, i. cis.) respectively, were given in a volume of 10 µ1. Apomorphine (2.5 mg/kg, ip) was administered to all groups immediately after i. cis. treatment. Animals were observed for a 30 sec periods, every 15 min for a total period 2 hr and stereotypy was scored (12). Stereotyped behaviour was graded as follows; 1 - asleep or inactive, 2 - mild intermittent sniffing and head movements, 3 - sniffing with limited movements, some sniffing at the top of the cage, 4 severe fighting alternating with leaping and running fast around the cage and some vocalization, 5 - wild fighting, leaping, persistent vocalization and bleeding from face and paws needing isolation, 6 - very severe fight-

^{*} Present address: Department of Pharmacology, DAV Dental College, Yamuna Nagar-135 001 (Haryana)

ing, leaping, bouncing at the top of the cage persistent vocalization and bleeding from face and paws needing isolation.

Amphetamine induced stereotypy: Rats were divided into 3 groups of 10 in each. Groups I served as control (receiving 10 µl normal saline, i. cis) just before amphetamine (25 mg/Kg, ip). In groups II and III adenosine and inosine 12.5 nM/rat, respectively were given in a volume or 10 µ1, just before amphetamine administration. Each animal was than scored (13) every 30 min for a period 2hr as follows. Grade 0 - No activity, Grade 1 - normal activity, Grade 2 - increased motor activity, Grade 3 - stereotyped head searching, Grade 4 - continuous licking, Grade 5 - Mock bitting and/or Grade 6 - continuous gnawing.

In both types of experiments the mean stereotypy scores (control vs drug - pretreated groups) were compared by Student's 't' test (unpaired).

RESULTS

Apomorphine induced stereotypy: Adenosine and inosine significantly decreased apomorphine induced stereotyped behaviour in rats. The peak effect of both adenosine and inosine was observed after 90 min of intracisternal administration, although the onset of their action was rapid (Table I).

Amphetamine induced stereotypy: Both adenosine and inosine significantly antagonized amphetamine induced stereotypy. Though the effect persists for a shorter duration as compared to apomorphine experiments (Table I).

DISCUSSION

The nigrostriatal dopaminergic system has been recognised as being mainly responsible for the induction of stereotypy (14, 15, 16) and dopaminergic action of drugs is a prerequiste for induction of stereotypy. Adenosine is reported to inhibit the release of almost all neurotransmitters whether they are inhibitory or excitatory (9) viz, Ach (17), norepinephrine (18) dopamine (19) 5-HT (20). Therefore reduced release of dopamine by adenosine and inosine in the nigrostriatal system would be consistent with the reduction of stereotypy behaviour induced by apomorphine and amphetamine. Moreover, Rebeiro (21) and Wu et al (22) have reported that adenosine ATP, and other adenosine agonists decrease Ca2+ uptake by rat brain synaptosomes during K+ depolarization and these workers suggested that adenosine, ATP and other adenosine agonists exert their inhibitory effect on neurotransmission by inhibition of Ca2+ flux occurs at presynatic sites, it may reduce the release of brain neurotransmitters. Therefore, strong antagonistic effect of adenosine and inosine in apomorphine and amph-etamine induced stereotypy may be explained on the basis of decreased dopamine release in the nigrostriatal system due to inhibiting of Ca2+ dependent transmitter release mechanism, though this work not elucidate the mechanism involved in regulation of Ca2+ by adenosine and inosine.

TABLE I: Effect of adenosine and inosine (12. 5nM/rat, i. cis on apomorphine (2.5 mg/kg, ip) and amphetamine (25 mg/kg, ip) induced stereotypy in rats. Data represents - mean stereotypy score ± SEM of 10 animals for each drug.

Stereotypy score/grades Stereotypy score/grades								
Drugs	After 15 min	After 30 min	After 45 min	After 60 min	After 75 min	After 90 min	After 105 min	After 120 min
Apomor	2.6±0.06	4.8±1.33	4.8±1.33	4.6±0.16	3.8±1.24	2.6±0.16	2.0±0.00	1.2±1.33
Adeno + Apomor	1.8±1.33***	2.2±1.33*	1.6±0.16*	1.2±0.33*	1.0±0.00**	0.8±1.33***		
Ino + Apomor	2.0±0.00***	2.3±1.51	2.0±0.00*	1.4±0.16*	1.0±0.00***	0.6±0.16***	_	
Amphe		4.3±0.21	_	4.5±0.22		4.2±0.19	AND DESCRIPTION	3.9±0.27
Adeno + Amphe	_	3.3±0.15*		4.0±0.20***		3.5±0.16***		3.6±0.16***
Ino + Amphe		3.9±0.23*	-	4.5±0.20***	and the second	4.1±0.17***	No. of Lot	3.8±0.13***

^{*}P<0.01, *P<0.05, ***P>0.05, when compared with controls (Apomorphine, Amphetamine 't' test, unpaired). Apomor-Apomorphine; Amphe-Amphetamine, Adeno-Adenosine; Ino-Inosine.

REFERENCES

- Stone TW. Physiological roles for adenosine and adenosine-5-Triphosphate in the nervous system. Neuroscience 1981; 6: 523-55.
- Winn HR, Rubio R, Berne RM. Brain adenosine concentration during hypoxia in rats. Amer J Physiol 1981a; 241: H235-H42.
- Winn HR, Welsch J, Rubio R, Beine RM. Brain adenosine production in rats during sustained alterations in systemic blood pressure. Amer J Physiol 1980a; 239: H644-H51.
- Winn HR, Welsh J, Rubio R, Berne RM. Changes in adenosine during bicuculline induced seizures in rats: Effect of hypoxia and altered systemic blood pressure. Circul Res 1980B; 47: 481-91.
- Winn HR, Rubio R, Berne RM. Brain adenosine production during 60 seconds of ischemia. Circul Res 1979; 45: 486-92.
- Schubert P, Lee K, Kreutzberg CW. Neuronal release of adenosine derivatives and modulation of signal processing in the CNS. Prog Brain Res 1982; 55: 225-38.
- Kostopulos RK, Phillis JW. Purinergic depression of neurons in diffrent areas of the rat brain. Exp neurol 1977; 55: 719-29.
- Dunwiddle TV, Hoffer BJ. Adenine nucleotides and synaptic transmission in the *in vitro* hippocampus. *Brit J Pharmacol* 1980; 69: 59-68.
- Katims JJ, Murphy KMM, Synder SH. Xanthine stimulants and adenosine. In: Creese I, eds, stimulants, Neurochemical, Behaviour and clinical perspectives. New York: Ravan Press 1983; 63-79.
- Synder SH, Katims JJ, Annau Z, Borns RF, Daly JW. Adenosine receptors and behavioural actions of methylxanthines. Prc Natl Acad Sci 1981; 78: 3260-64.
- Dunwiddie TV. Endogenously released adenosine regulates excitability in vitro rat hipocampus. Epilepsia 1980; 21: 541-8.
- Costail B, Marsden CD, Nayler RJ, Pycock CJ. Stereotyped behaviour patterns and hyperactivity induced by amphetamine and apomorphine after discrete 6-Hydroxydopamine lesions of extrapyramidal and mesolimbic nuclei. *Brain Res* 1977; 123: 89-111.

- Quiton RM, Halliwell G. Effects of alpha methyl DOPA and DOPA on amphetamine excitatory response in reserpinized rats. Nature 1963; 200: 178-9.
- Randrup A, Munkvad I. Behavioural stereotypies induced by pharmacological agents. *Pharmako Psychiat* 1968; 1: 18-26.
- Randrup A, Munkvad I. Biochemical, anatomical and psychological investigations of stereotyped behaviour by amphetamine. In: Costs E, Garattinis, eds, Amphetamine and related compounds. New York: Ravan Press 1990; 695-713.
- Scheel-Kruger J, Randrup A. Stereotypy hyperactive behaviour produced by dopamine in the absence of nor-adrenaline. *Life* science 1967; 6: 1389-98.
- Jackison R, Strittmatter, H, Fehr R, Hertting G. Modulation of hippocampal noradrenaline and acetylcholine release by endogenous adenosine. Naunyn schmiedeberg's Arch Pharmac 1983: 324: R20.
- Fredholm BB, Jonzon B, Lindgren E. Inhibition of noradrenaline release from hippocampal slices by a stable adenosine analogue. Acta physiol scand 1983; 515: 7-10.
- Michaelis ML, Michaelis EK, Myers SH. Adenosine modulation of synaptosomal depomine release. *Life Science* 1979; 24: 2083-92.
- Harms HH, Warden G, Mulder AH. Effect of adenosine on depolarization induced release of various radio-labelled neurotransmitters from sclices of rat Corpus striatum. Neuropharmacology 1979; 18: 577-80.
- Ribeiro JA, Sa-Almeida AM, Namorado JM. Adenosine and adenosine triphosphate decrease 45Ca²⁺⁺ uptake by synaptosomes stimulated by potassium. *Biochem pharmacol* 1979; 28: 1297-1300.
- Wu PH, Phillis JW, Thierry DL. Adenosine receptor agonists inhibit K⁺ evoked Ca²⁺ uptake by rat brain cortical synaptosomes. J Neurochem 1982; 39: 700-708.